A Parallel Splitting Method for Coupled Monotone Inclusions
نویسندگان
چکیده
A parallel splitting method is proposed for solving systems of coupled monotone inclusions in Hilbert spaces, and its convergence is established under the assumption that solutions exist. Unlike existing alternating algorithms, which are limited to two variables and linear coupling, our parallel method can handle an arbitrary number of variables as well as nonlinear coupling schemes. The breadth and flexibility of the proposed framework is illustrated through applications in the areas of evolution inclusions, variational problems, best approximation, and network flows.
منابع مشابه
2 5 Fe b 20 09 A PARALLEL SPLITTING METHOD FOR WEAKLY COUPLED MONOTONE INCLUSIONS ∗
A parallel splitting method is proposed for solving systems of coupled monotone inclusions in Hilbert spaces. Convergence is established for a wide class of coupling schemes. Unlike classical alternating algorithms, which are limited to two variables and linear coupling, our parallel method can handle an arbitrary number of variables as well as nonlinear coupling schemes. The breadth and flexib...
متن کاملSystems of Structured Monotone Inclusions: Duality, Algorithms, and Applications
A general primal-dual splitting algorithm for solving systems of structured coupled monotone inclusions in Hilbert spaces is introduced and its asymptotic behavior is analyzed. Each inclusion in the primal system features compositions with linear operators, parallel sums, and Lipschitzian operators. All the operators involved in this structured model are used separately in the proposed algorith...
متن کاملA Douglas-Rachford Type Primal-Dual Method for Solving Inclusions with Mixtures of Composite and Parallel-Sum Type Monotone Operators
In this paper we propose two different primal-dual splitting algorithms for solving inclusions involving mixtures of composite and parallel-sum type monotone operators which rely on an inexact Douglas-Rachford splitting method, however applied in different underlying Hilbert spaces. Most importantly, the algorithms allow to process the bounded linear operators and the set-valued operators occur...
متن کاملA Splitting Algorithm for Coupled System of Primal-Dual Monotone Inclusions
We propose a splitting algorithm for solving a coupled system of primal-dual monotone inclusions in real Hilbert spaces. The proposed algorithm has a structure identical to that of the forward-backward algorithm with variable metric. The operators involved in the problem formulation are used separately in the sense that single-valued operators are used individually and approximately in the forw...
متن کاملSolving Systems of Monotone Inclusions via Primal-dual Splitting Techniques
In this paper we propose an algorithm for solving systems of coupled monotone inclusions in Hilbert spaces. The operators arising in each of the inclusions of the system are processed in each iteration separately, namely, the single-valued are evaluated explicitly (forward steps), while the set-valued ones via their resolvents (backward steps). In addition, most of the steps in the iterative sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 48 شماره
صفحات -
تاریخ انتشار 2010